Aquatic microplastics, not necessarily a problem

Tiistai 25.8.2020 klo 18:18 - Mikko Nikinmaa

Indigestible fibers are considered to be good for you. Such fibers enter your alimentary canal and pass through it without any changes, nothing is taken up in the gut. However, they help in the motility of the gut, and some materials, which are indigestible to us, can be utilized by gut microbes. Regardless, if material is going through your gut without anything taken up, it is inert and if its dimensions are such that it is easily transferred through the gut, cannot be considered harmful. The same is true for all animals.

So, fibers are good for you. If I changed the word fiber to microplastic, then people would start screaming about terrible poisons. Headline news almost everywhere in the world feature every once in a while stories about how these terrible microplastics are found in fish and other seafood, and can therefore be transferred to you. But if the dimensions are correct, the microplastics can be just like any other inert material going through the alimentary canal. Many plastics are nowadays made such that they meet foodstuff packaging requirements. If these plastics are broken down or if microbeads are produced from such plastics, they are completely harmless. We have been drinking water and soft drinks in plastic bottles for tens of years without being poisoned by microplastics, although every time we drink, we digest microplastics. So, in principle, microplastics are not a problem, if the material is foodstuff quality.

Microplastics can, however, be a problem. First, there are many types of plastics, some of which contain toxic components. Currently, about half of all the microplastics entering water are particles from tire wear. With the current traffic situation, there is very little one can do to this type of contamination. This is in contrast to microplastics in wastewater treatment plants, where more than 95 % of plastics are retained. The tire plastics have toxic components. Second, most of the toxic compounds are hydrophobic. Therefore, they adsorb on plastic particles, and will easily diffuse to organisms through the hydrophobic lipid gut walls. In this case it is not the microplastics themselves which are toxic, but the toxic compounds that have found their way to the environment. By stopping the release of these toxicants also the toxicity of microplastics would disappear.

The problem is that by focusing on microplastics in the aquatic environment, one is not addressing the real questions: decreasing road traffic (thus decreasing tire wear particles), decreasing toxicant release (thus decreasing toxicant adsorption and transfer into organisms) and completely stopping the use of toxic compounds in plastics.     

Kommentoi kirjoitusta. Avainsanat: plastic pollution, aquatic toxicology

Aquatic Oil Pollution ? many-sided problem, until oil use is stopped

Torstai 18.7.2019 klo 11:44 - Mikko Nikinmaa


With oil spills, the usual picture in the news is a bird covered with oil. The contaminated bird loses its ability to regulate temperature in water and slowly dies because of heat loss. Although this is a significant problem during oil spills, it is probably not the most important one. As the most important one I would place the effect of oil contamination on mainly unicellular marine algae. Marine algae account for almost half of global photosynthesis, thus being the most important carbon dioxide sinks of the world. Largely because of oil pollution, it has been estimated that the algal carbon dioxide sink has decreased by 20 %. This negative effect is greater than would be caused, if deforestation of Amazon rain forest would increase manyfold. Oil pollution also influences fish. Effects are largely age-dependent and associated mainly with cardiac function. It appears that the toxicity of oil increases with increasing pressure. This is significant, as oil is drilled at deeper depths than earlier. In addition, dispersants, changing oil to small droplets, which are dispersed in the water column, increase the toxicity of oil spill to fish and other aquatic organisms, mostly by increasing the surface area of oil in contact with the (respiratory) surface of organisms. As a consequence, the uptake of toxic components of oil, and thereby their toxic effects, are increased. In contrast, the dispersants in the concentrations used appear to cause little toxicity. It is quite clear that as long as oil is used in significant amounts in fuels and energy production, the problems persist. Further, the socalled biofuels or biodiesels are exactly as bad for aquatic life as fossil oil. Therefore, in terms of combatting climate change, using biofuel is exactly the same as using fossil oil, if the use of fossil fuel is coupled with forestation.

Kommentoi kirjoitusta. Avainsanat: aquatic toxicology, oil spill, water pollution, fish kills

SETAC (Society for Environmental Toxicology and Chemistry) in Helsinki 26.-31.5.

Sunnuntai 26.5.2019 klo 13:26 - Mikko Nikinmaa

This coming week more that 2000 environmental scientists meet in Helsinki discussing many different aspects of environmental contamination, starting from indoor air quality ang going to endocrine disruption in wildlife. Presentations include those on nanotoxicology, plastic pollution and climate change. Thus, pressing environmental problems are handled by a wide internationel group of experts. My personal input in the meeting is a session on individual variation in toxicological responses, which I wll discuss here later.

Kommentoi kirjoitusta. Avainsanat: environmental polllution, aquatic toxicology